In triangle ABC, angle ABC=15 degrees, angle ACB=30 degrees, AD is the median to side BC, A-D-C. angle BAD=?
Answer
We will use the Sine Rule.
In triangle ABD,
AD / sin(ABD) = BD / sin(BAD)
So
AD / BD = sin(ABD) / sin(BAD)
In triangle ADC,
AD / sin(ACD) = CD / sin(CAD)
and AD / CD = sin(ACD) / sin(CAD)
Since BD = CD, ( because D is median in BC ),
implies AD/BD = AD/CD, thus
sin(ABD) / sin(BAD) = sin(ACD) / sin(CAD)
and also BAC = 180 – ABC – ACB = 180 – 15 – 30 = 135.
sin ( ACD ) = sin (30) = 0.5
sin (ABD ) = sin (15) = 0.2588
This yields in the above,
sin(ABD) / sin(BAD) = sin(ACD) / sin(CAD) becomes,
sin(CAD)/sin(BAD) = sin(ACD) / sin(ABD)
sin(CAD)/sin(BAD) = 0.5 / 0.2588 = 1.932 ( roughly ). .. ..(1)
Also,
sin(CAD) = sin ( BAC – BAD )
sin(CAD) = sin ( 135 – BAD )
sin(CAD) = sin(135) cos(BAD) – cos(135) sin ( BAD )
Now, sin ( 135 ) = 0.7071 and cos 135 = – 0.7071. so,
sin(CAD) = sin(135) cos(BAD) – cos(135) sin ( BAD )
sin(CAD) = ( 0.7071) cos(BAD) + ( 0.7071 ) sin ( BAD )
sin(CAD) = ( 0.7071) cos(BAD) + ( 0.7071 ) sin ( BAD ) … (2)
Put (2) into (1) to get ,
[( 0.7071) cos(BAD) + ( 0.7071 ) sin ( BAD )] /sin(BAD)
= 1.932 , That is,
cos(BAD) + sin (BAD) = 2.7323 sin(BAD)
That is,
1.7323 sin(BAD) = cos(BAD)
sin(BAD) / cos(BAD) = 1.7323
Tan (BAD) = 1.7323 [ because sinx / cosx = tan x ]
BAD = Tan^(-1) 1.7323 = 60 degrees ( approximately ).